Функція \(w = z^n \) є аналітичною. Покажемо це. Але для цього спочатку запишемо умови Коші-Рімана в полярній системі координат.

Оскільки \(x = \rho \cos \varphi \), а \(y = \rho \sin \varphi \), то \(\text{Re} z^n = u(x, y) = u(x(\rho, \varphi), y(\rho, \varphi)) \) і \(\text{Im} z^n = v(x, y) = v(x(\rho, \varphi), y(\rho, \varphi)) \) - складні дійсні функції двох змінних. Тоді, застосовуючи правила диференціювання складної функції, матимемо:

\[
\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi, \quad \frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \cos \varphi + \frac{\partial v}{\partial y} \sin \varphi, \\
\frac{\partial u}{\partial \varphi} = -\frac{\partial u}{\partial x} \rho \sin \varphi + \frac{\partial u}{\partial y} \rho \cos \varphi, \quad \frac{\partial v}{\partial \rho} = -\frac{\partial v}{\partial x} \rho \sin \varphi + \frac{\partial v}{\partial y} \rho \cos \varphi.
\]

В той же час \(\frac{\partial x}{\partial \rho} = \cos \varphi, \quad \frac{\partial y}{\partial \varphi} = \sin \varphi, \quad \frac{\partial x}{\partial \varphi} = -\rho \sin \varphi, \quad \frac{\partial y}{\partial \rho} = \rho \cos \varphi \). Звідки випливають співвідношення:

\[
\frac{\partial u}{\partial \rho} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi, \quad \frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \cos \varphi + \frac{\partial v}{\partial y} \sin \varphi, \\
\frac{\partial u}{\partial \varphi} = -\frac{\partial u}{\partial x} \rho \sin \varphi + \frac{\partial u}{\partial y} \rho \cos \varphi, \quad \frac{\partial v}{\partial \rho} = -\frac{\partial v}{\partial x} \rho \sin \varphi + \frac{\partial v}{\partial y} \rho \cos \varphi.
\]

Підставляючи в похідні функції \(u(x(\rho, \varphi), y(\rho, \varphi)) \) умови Коші-Рімана, маємо

\[
\frac{\partial u}{\partial \rho} = \frac{\partial v}{\partial y} \cos \varphi - \frac{\partial v}{\partial x} \sin \varphi, \quad \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial y} \rho \sin \varphi - \frac{\partial v}{\partial x} \rho \cos \varphi.
\]

Таким чином, \(\frac{\partial u}{\partial \rho} = \frac{1}{\rho} \frac{\partial v}{\partial \varphi}, \quad \frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{\partial v}{\partial \rho} \) - умови Коші-Рімана в полярній системі координат. Для функції \(w = z^n = \rho^n (\cos n\varphi + i \sin n\varphi) \): \(u = \rho^n \cos n\varphi, \quad v = \rho^n \sin n\varphi \), і, як легко встановити, умови виконуються.

Далі, спираючись на результати попередніх лекцій, можна показати, що

\[w' = nz^{n-1} \neq 0, \quad z \neq 0. \]

Отже, степенева функція - конформне відображення всюди за виключенням початку координат.

Визначення 1. Функцію \(w(z) \) будемо називати однолистою в області \(D \) з комплексної площині \(Oxy \) , якщо вона взаємнооднозначно відображає цю область в деяку область \(\Delta \) з комплексної площині \(Ouv \). Область \(\Delta \) називається областью однолистості.
Встановимо області однолистості степеневої функції. Очевидно, що функція однозначна. Але деякі точки можуть мати один образ, тобто

\[z_1^n = z_2^n \iff \rho_1^n (\cos n\varphi_1 + i \sin n\varphi_1) = \rho_2^n (\cos n\varphi_2 + i \sin n\varphi_2) . \]

Звідки \(\rho_1 = \rho_2 \quad \varphi_1 = \varphi_2 + \frac{2\pi}{n} \). Отже, області однолистості – кути нахилом \(\frac{2\pi}{n} \).

Геометричні перетворення, які виконує степенева функція вказані на рис. 1.

Рис. 1.

При відображеннях прямі переходять у криві відповідного кольору.

Подробиці побудови рисунку. Оскільки, \(u = \rho^n \cos n\varphi \), \(v = \rho^n \sin n\varphi \), то

\[\rho = \sqrt[\frac{2u}{\cos n\varphi}] \quad v = \sqrt[\frac{2u}{\sin n\varphi}] . \]

1) Якщо \(u = u_0 > 0 \), то \(\rho(\varphi) = \sqrt[\frac{2u_0}{\cos n\varphi}] \) (червоні і зелені криві)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>0</th>
<th>(\frac{\pi}{6n})</th>
<th>(\frac{\pi}{4n})</th>
<th>(\frac{\pi}{3n})</th>
<th>(\frac{\pi}{2n})</th>
<th>(\frac{3\pi}{2n})</th>
<th>(\frac{5\pi}{3n})</th>
<th>(\frac{7\pi}{4n})</th>
<th>(\frac{11\pi}{6n})</th>
<th>(\frac{2\pi}{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\varphi))</td>
<td>(\sqrt[\frac{2u_0}{\cos n\varphi}])</td>
</tr>
</tbody>
</table>

Перша частина кривої, побудована по точкам таблиці, представлена на рис. 2.
Рис. 2.

Таблиці точки виділені на кривій.

Аналогічним чином можна побудувати інші криві.

2) Якщо \(u = u_0 < 0 \), то \(\rho(\varphi) = \sqrt[2n]{\frac{u_0}{\cos n\varphi}} \) (блакитні криві)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(\frac{\pi}{2n})</th>
<th>(\frac{2\pi}{3n})</th>
<th>(\frac{3\pi}{4n})</th>
<th>(\frac{5\pi}{6n})</th>
<th>(\frac{\pi}{n})</th>
<th>(\frac{7\pi}{6n})</th>
<th>(\frac{5\pi}{4n})</th>
<th>(\frac{4\pi}{3n})</th>
<th>(\frac{3\pi}{2n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\varphi))</td>
<td>(\infty)</td>
<td>(\sqrt[2n]{2u_0})</td>
<td>(\sqrt[2n]{2u_0} \sqrt[2]{2})</td>
<td>(\sqrt[2n]{2u_0} \sqrt[3]{3})</td>
<td>(\sqrt[2n]{u_0})</td>
<td>(\sqrt[2n]{2u_0} \sqrt[3]{3})</td>
<td>(\sqrt[2n]{2u_0} \sqrt[2]{2})</td>
<td>(\sqrt[2n]{2u_0})</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

3) Якщо \(v = v_0 > 0 \), то \(\rho(\varphi) = \sqrt[n]{\frac{v_0}{\sin n\varphi}} \) (фіолетові криві)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(0)</th>
<th>(\frac{\pi}{6n})</th>
<th>(\frac{\pi}{4n})</th>
<th>(\frac{\pi}{3n})</th>
<th>(\frac{\pi}{2n})</th>
<th>(\frac{2\pi}{3n})</th>
<th>(\frac{3\pi}{4n})</th>
<th>(\frac{5\pi}{6n})</th>
<th>(\frac{\pi}{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\varphi))</td>
<td>(\infty)</td>
<td>(\sqrt[n]{2v_0})</td>
<td>(\sqrt[n]{2v_0} \sqrt[2]{2})</td>
<td>(\sqrt[n]{2v_0} \sqrt[3]{3})</td>
<td>(\sqrt[n]{v_0})</td>
<td>(\sqrt[n]{2v_0} \sqrt[3]{3})</td>
<td>(\sqrt[n]{2v_0} \sqrt[2]{2})</td>
<td>(\sqrt[n]{2v_0})</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>

4) Якщо \(v = v_0 < 0 \), то \(\rho(\varphi) = \sqrt[n]{\frac{v_0}{\sin n\varphi}} \) (помаранчеві криві)

<table>
<thead>
<tr>
<th>(\varphi)</th>
<th>(\frac{\pi}{n})</th>
<th>(\frac{7\pi}{6n})</th>
<th>(\frac{5\pi}{4n})</th>
<th>(\frac{4\pi}{3n})</th>
<th>(\frac{3\pi}{2n})</th>
<th>(\frac{5\pi}{3n})</th>
<th>(\frac{7\pi}{4n})</th>
<th>(\frac{11\pi}{6n})</th>
<th>(\frac{2\pi}{n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho(\varphi))</td>
<td>(\infty)</td>
<td>(\sqrt[n]{2v_0})</td>
<td>(\sqrt[n]{2v_0} \sqrt[2]{2})</td>
<td>(\sqrt[n]{2v_0} \sqrt[3]{3})</td>
<td>(\sqrt[n]{v_0})</td>
<td>(\sqrt[n]{2v_0} \sqrt[3]{3})</td>
<td>(\sqrt[n]{2v_0} \sqrt[2]{2})</td>
<td>(\sqrt[n]{2v_0})</td>
<td>(\infty)</td>
</tr>
</tbody>
</table>